3. Multi-Node (DDP) Job

Prerequisites:

Other interesting resources:

Click here to see the source code for this example

job.sh

 # distributed/multi_gpu/job.sh -> distributed/multi_node/job.sh
 #!/bin/bash
 #SBATCH --gpus-per-task=rtx8000:1
 #SBATCH --cpus-per-task=4
 #SBATCH --ntasks-per-node=4
+#SBATCH --nodes=2
 #SBATCH --mem=16G
 #SBATCH --time=00:15:00
 
 
 # Echo time and hostname into log
 echo "Date:     $(date)"
 echo "Hostname: $(hostname)"
 
 
 # Ensure only anaconda/3 module loaded.
 module --quiet purge
 # This example uses Conda to manage package dependencies.
 # See https://docs.mila.quebec/Userguide.html#conda for more information.
 module load anaconda/3
 module load cuda/11.7
 
 # Creating the environment for the first time:
 # conda create -y -n pytorch python=3.9 pytorch torchvision torchaudio \
 #     pytorch-cuda=11.7 -c pytorch -c nvidia
 # Other conda packages:
 # conda install -y -n pytorch -c conda-forge rich tqdm
 
 # Activate pre-existing environment.
 conda activate pytorch
 
-
-# Stage dataset into $SLURM_TMPDIR
-mkdir -p $SLURM_TMPDIR/data
-ln -s /network/datasets/cifar10/cifar-10-python.tar.gz $SLURM_TMPDIR/data/
+# Stage dataset into $SLURM_TMPDIR (only on the first worker of each node)
+srun --ntasks=$SLURM_JOB_NUM_NODES --ntasks-per-node=1 bash -c \
+   'mkdir -p $SLURM_TMPDIR/data && ln -s /network/datasets/cifar10/cifar-10-python.tar.gz $SLURM_TMPDIR/data/'
 
 # Get a unique port for this job based on the job ID
 export MASTER_PORT=$(expr 10000 + $(echo -n $SLURM_JOBID | tail -c 4))
-export MASTER_ADDR="127.0.0.1"
+export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
 
 # Fixes issues with MIG-ed GPUs with versions of PyTorch < 2.0
 unset CUDA_VISIBLE_DEVICES
 
 # Execute Python script in each task (one per GPU)
 srun python main.py

main.py

 # distributed/multi_gpu/main.py -> distributed/multi_node/main.py
 """Multi-GPU Training example."""
 import argparse
 import logging
 import os
+from datetime import timedelta
 from pathlib import Path
 
 import rich.logging
 import torch
 import torch.distributed
 from torch import Tensor, nn
 from torch.distributed import ReduceOp
 from torch.nn import functional as F
 from torch.utils.data import DataLoader, random_split
 from torch.utils.data.distributed import DistributedSampler
 from torchvision import transforms
 from torchvision.datasets import CIFAR10
 from torchvision.models import resnet18
 from tqdm import tqdm
 
 
 def main():
     # Use an argument parser so we can pass hyperparameters from the command line.
     parser = argparse.ArgumentParser(description=__doc__)
     parser.add_argument("--epochs", type=int, default=10)
     parser.add_argument("--learning-rate", type=float, default=5e-4)
     parser.add_argument("--weight-decay", type=float, default=1e-4)
     parser.add_argument("--batch-size", type=int, default=128)
     args = parser.parse_args()
 
     epochs: int = args.epochs
     learning_rate: float = args.learning_rate
     weight_decay: float = args.weight_decay
     # NOTE: This is the "local" batch size, per-GPU.
     batch_size: int = args.batch_size
 
     # Check that the GPU is available
     assert torch.cuda.is_available() and torch.cuda.device_count() > 0
-    rank, world_size = setup()
+    rank, world_size, local_rank = setup()
     is_master = rank == 0
-    device = torch.device("cuda", rank)
+    is_local_master = local_rank == 0
+    device = torch.device("cuda", local_rank)
 
     # Setup logging (optional, but much better than using print statements)
     logging.basicConfig(
         level=logging.INFO,
         format=f"[{rank}/{world_size}] %(name)s - %(message)s ",
         handlers=[rich.logging.RichHandler(markup=True)],  # Very pretty, uses the `rich` package.
     )
 
     logger = logging.getLogger(__name__)
-    logger.info(f"World size: {world_size}, global rank: {rank}")
+    logger.info(f"World size: {world_size}, global rank: {rank}, local rank: {local_rank}")
 
     # Create a model and move it to the GPU.
     model = resnet18(num_classes=10)
     model.to(device=device)
 
     # Wrap the model with DistributedDataParallel
     # (See https://pytorch.org/docs/stable/nn.html#torch.nn.parallel.DistributedDataParallel)
-    model = nn.parallel.DistributedDataParallel(model, device_ids=[rank], output_device=rank)
+    model = nn.parallel.DistributedDataParallel(
+        model, device_ids=[local_rank], output_device=local_rank
+    )
 
     optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
 
     # Setup CIFAR10
     num_workers = get_num_workers()
+
     dataset_path = Path(os.environ.get("SLURM_TMPDIR", ".")) / "data"
     train_dataset, valid_dataset, test_dataset = make_datasets(
-        str(dataset_path), is_master=is_master
+        str(dataset_path), is_master=is_local_master
     )
 
     # Restricts data loading to a subset of the dataset exclusive to the current process
     train_sampler = DistributedSampler(dataset=train_dataset, shuffle=True)
     valid_sampler = DistributedSampler(dataset=valid_dataset, shuffle=False)
     test_sampler = DistributedSampler(dataset=test_dataset, shuffle=False)
 
     # NOTE: Here `batch_size` is still the "local" (per-gpu) batch size.
     # This way, the effective batch size scales directly with number of GPUs, no need to specify it
     # in advance. You might want to adjust the learning rate and other hyper-parameters though.
     if is_master:
         logger.info(f"Effective batch size: {batch_size * world_size}")
     train_dataloader = DataLoader(
         train_dataset,
         batch_size=batch_size,
         num_workers=num_workers,
         shuffle=False,  # shuffling is now done in the sampler, not the dataloader.
         sampler=train_sampler,
     )
     valid_dataloader = DataLoader(
         valid_dataset,
         batch_size=batch_size,
         num_workers=num_workers,
         shuffle=False,
         sampler=valid_sampler,
     )
     test_dataloader = DataLoader(  # NOTE: Not used in this example.
         test_dataset,
         batch_size=batch_size,
         num_workers=num_workers,
         shuffle=False,
         sampler=test_sampler,
     )
 
     # Checkout the "checkpointing and preemption" example for more info!
     logger.debug("Starting training from scratch.")
 
     for epoch in range(epochs):
         logger.debug(f"Starting epoch {epoch}/{epochs}")
 
         # NOTE: Here we need to call `set_epoch` so the ordering is able to change at each epoch.
         train_sampler.set_epoch(epoch)
 
         # Set the model in training mode (important for e.g. BatchNorm and Dropout layers)
         model.train()
 
         # NOTE: using a progress bar from tqdm because it's nicer than using `print`.
         progress_bar = tqdm(
             total=len(train_dataloader),
             desc=f"Train epoch {epoch}",
             disable=not is_master,
         )
 
         # Training loop
         for batch in train_dataloader:
             # Move the batch to the GPU before we pass it to the model
             batch = tuple(item.to(device) for item in batch)
             x, y = batch
 
             # Forward pass
             logits: Tensor = model(x)
 
             local_loss = F.cross_entropy(logits, y)
 
             optimizer.zero_grad()
             local_loss.backward()
             # NOTE: nn.DistributedDataParallel automatically averages the gradients across devices.
             optimizer.step()
 
             # Calculate some metrics:
             # local metrics
             local_n_correct_predictions = logits.detach().argmax(-1).eq(y).sum()
             local_n_samples = logits.shape[0]
             local_accuracy = local_n_correct_predictions / local_n_samples
 
             # "global" metrics: calculated with the results from all workers
             # NOTE: Creating new tensors to hold the "global" values, but this isn't required.
             n_correct_predictions = local_n_correct_predictions.clone()
             # Reduce the local metrics across all workers, sending the result to rank 0.
             torch.distributed.reduce(n_correct_predictions, dst=0, op=ReduceOp.SUM)
             # Actual (global) batch size for this step.
             n_samples = torch.as_tensor(local_n_samples, device=device)
             torch.distributed.reduce(n_samples, dst=0, op=ReduceOp.SUM)
             # Will store the average loss across all workers.
             loss = local_loss.clone()
             torch.distributed.reduce(loss, dst=0, op=ReduceOp.SUM)
             loss.div_(world_size)  # Report the average loss across all workers.
 
             accuracy = n_correct_predictions / n_samples
 
             logger.debug(f"(local) Accuracy: {local_accuracy:.2%}")
             logger.debug(f"(local) Loss: {local_loss.item()}")
             # NOTE: This would log the same values in all workers. Only logging on master:
             if is_master:
                 logger.debug(f"Accuracy: {accuracy.item():.2%}")
                 logger.debug(f"Average Loss: {loss.item()}")
 
             # Advance the progress bar one step and update the progress bar text.
             progress_bar.update(1)
             progress_bar.set_postfix(loss=loss.item(), accuracy=accuracy.item())
         progress_bar.close()
 
         val_loss, val_accuracy = validation_loop(model, valid_dataloader, device)
         # NOTE: This would log the same values in all workers. Only logging on master:
         if is_master:
             logger.info(f"Epoch {epoch}: Val loss: {val_loss:.3f} accuracy: {val_accuracy:.2%}")
 
     print("Done!")
 
 
 @torch.no_grad()
 def validation_loop(model: nn.Module, dataloader: DataLoader, device: torch.device):
     model.eval()
 
     total_loss = torch.as_tensor(0.0, device=device)
     n_samples = torch.as_tensor(0, device=device)
     correct_predictions = torch.as_tensor(0, device=device)
 
     for batch in dataloader:
         batch = tuple(item.to(device) for item in batch)
         x, y = batch
 
         logits: Tensor = model(x)
         loss = F.cross_entropy(logits, y)
 
         batch_n_samples = x.shape[0]
         batch_correct_predictions = logits.argmax(-1).eq(y).sum()
 
         total_loss += loss
         n_samples += batch_n_samples
         correct_predictions += batch_correct_predictions
 
     # Sum up the metrics we gathered on each worker before returning the overall val metrics.
     torch.distributed.all_reduce(total_loss, op=torch.distributed.ReduceOp.SUM)
     torch.distributed.all_reduce(correct_predictions, op=torch.distributed.ReduceOp.SUM)
     torch.distributed.all_reduce(n_samples, op=torch.distributed.ReduceOp.SUM)
 
     accuracy = correct_predictions / n_samples
     return total_loss, accuracy
 
 
 def setup():
     assert torch.distributed.is_available()
     print("PyTorch Distributed available.")
     print("  Backends:")
     print(f"    Gloo: {torch.distributed.is_gloo_available()}")
     print(f"    NCCL: {torch.distributed.is_nccl_available()}")
     print(f"    MPI:  {torch.distributed.is_mpi_available()}")
 
+    # NOTE: the env:// init method uses FileLocks, which sometimes causes deadlocks due to the
+    # distributed filesystem configuration on the Mila cluster.
+    # For multi-node jobs, use the TCP init method instead.
+    master_addr = os.environ["MASTER_ADDR"]
+    master_port = os.environ["MASTER_PORT"]
+
+    # Default timeout is 30 minutes. Reducing the timeout here, so the job fails quicker if there's
+    # a communication problem between nodes.
+    timeout = timedelta(seconds=60)
+
     # DDP Job is being run via `srun` on a slurm cluster.
     rank = int(os.environ["SLURM_PROCID"])
+    local_rank = int(os.environ["SLURM_LOCALID"])
     world_size = int(os.environ["SLURM_NTASKS"])
 
     # SLURM var -> torch.distributed vars in case needed
     # NOTE: Setting these values isn't exactly necessary, but some code might assume it's
     # being run via torchrun or torch.distributed.launch, so setting these can be a good idea.
     os.environ["RANK"] = str(rank)
+    os.environ["LOCAL_RANK"] = str(local_rank)
     os.environ["WORLD_SIZE"] = str(world_size)
 
     torch.distributed.init_process_group(
         backend="nccl",
-        init_method="env://",
+        init_method=f"tcp://{master_addr}:{master_port}",
+        timeout=timeout,
         world_size=world_size,
         rank=rank,
     )
-    return rank, world_size
+    return rank, world_size, local_rank
 
 
 def make_datasets(
     dataset_path: str,
     is_master: bool,
     val_split: float = 0.1,
     val_split_seed: int = 42,
 ):
     """Returns the training, validation, and test splits for CIFAR10.
 
     NOTE: We don't use image transforms here for simplicity.
     Having different transformations for train and validation would complicate things a bit.
     Later examples will show how to do the train/val/test split properly when using transforms.
 
     NOTE: Only the master process (rank-0) downloads the dataset if necessary.
     """
     # - Master: Download (if necessary) THEN Barrier
     # - others: Barrier THEN *NO* Download
     if not is_master:
         # Wait for the master process to finish downloading (reach the barrier below)
         torch.distributed.barrier()
     train_dataset = CIFAR10(
         root=dataset_path, transform=transforms.ToTensor(), download=is_master, train=True
     )
     test_dataset = CIFAR10(
         root=dataset_path, transform=transforms.ToTensor(), download=is_master, train=False
     )
     if is_master:
         # Join the workers waiting in the barrier above. They can now load the datasets from disk.
         torch.distributed.barrier()
     # Split the training dataset into a training and validation set.
     n_samples = len(train_dataset)
     n_valid = int(val_split * n_samples)
     n_train = n_samples - n_valid
     train_dataset, valid_dataset = random_split(
         train_dataset, (n_train, n_valid), torch.Generator().manual_seed(val_split_seed)
     )
     return train_dataset, valid_dataset, test_dataset
 
 
 def get_num_workers() -> int:
     """Gets the optimal number of DatLoader workers to use in the current job."""
     if "SLURM_CPUS_PER_TASK" in os.environ:
         return int(os.environ["SLURM_CPUS_PER_TASK"])
     if hasattr(os, "sched_getaffinity"):
         return len(os.sched_getaffinity(0))
     return torch.multiprocessing.cpu_count()
 
 
 if __name__ == "__main__":
     main()

Running this example

$ sbatch job.sh