Wandb Setup

Prerequisites:

Make sure to create a Wandb account, then you can either :

  • Set your WANDB_API_KEY environment variable

  • Run wandb login from the command line

Other resources:

Click here to see the source code for this example

job.sh

 # distributed/single_gpu/job.sh -> good_practices/wandb_setup/job.sh
 #!/bin/bash
 #SBATCH --gpus-per-task=rtx8000:1
 #SBATCH --cpus-per-task=4
 #SBATCH --ntasks-per-node=1
 #SBATCH --mem=16G
 #SBATCH --time=00:15:00
 
 
 # Echo time and hostname into log
 echo "Date:     $(date)"
 echo "Hostname: $(hostname)"
 
 
 # Ensure only anaconda/3 module loaded.
 module --quiet purge
 # This example uses Conda to manage package dependencies.
 # See https://docs.mila.quebec/Userguide.html#conda for more information.
 module load anaconda/3
 module load cuda/11.7
 
 # Creating the environment for the first time:
 # conda create -y -n pytorch python=3.9 pytorch torchvision torchaudio \
 #     pytorch-cuda=11.7 -c pytorch -c nvidia
 # Other conda packages:
-# conda install -y -n pytorch -c conda-forge rich tqdm
+# conda install -y -n pytorch -c conda-forge rich tqdm wandb
 
 # Activate pre-existing environment.
 conda activate pytorch
 
 
 # Stage dataset into $SLURM_TMPDIR
 mkdir -p $SLURM_TMPDIR/data
 cp /network/datasets/cifar10/cifar-10-python.tar.gz $SLURM_TMPDIR/data/
 # General-purpose alternatives combining copy and unpack:
 #     unzip   /network/datasets/some/file.zip -d $SLURM_TMPDIR/data/
 #     tar -xf /network/datasets/some/file.tar -C $SLURM_TMPDIR/data/
 
 
 # Fixes issues with MIG-ed GPUs with versions of PyTorch < 2.0
 unset CUDA_VISIBLE_DEVICES
 
 # Execute Python script
 python main.py

main.py

 # distributed/single_gpu/main.py -> good_practices/wandb_setup/main.py
-"""Single-GPU training example."""
+"""Example job that uses Weights & Biases (wandb.ai)."""
 import argparse
 import logging
 import os
 from pathlib import Path
 
 import rich.logging
 import torch
 from torch import Tensor, nn
 from torch.nn import functional as F
 from torch.utils.data import DataLoader, random_split
 from torchvision import transforms
 from torchvision.datasets import CIFAR10
 from torchvision.models import resnet18
 from tqdm import tqdm
+import wandb
 
 
 def main():
-    # Use an argument parser so we can pass hyperparameters from the command line.
     parser = argparse.ArgumentParser(description=__doc__)
     parser.add_argument("--epochs", type=int, default=10)
     parser.add_argument("--learning-rate", type=float, default=5e-4)
     parser.add_argument("--weight-decay", type=float, default=1e-4)
     parser.add_argument("--batch-size", type=int, default=128)
     args = parser.parse_args()
 
     epochs: int = args.epochs
     learning_rate: float = args.learning_rate
     weight_decay: float = args.weight_decay
     batch_size: int = args.batch_size
 
     # Check that the GPU is available
     assert torch.cuda.is_available() and torch.cuda.device_count() > 0
     device = torch.device("cuda", 0)
 
     # Setup logging (optional, but much better than using print statements)
     logging.basicConfig(
         level=logging.INFO,
         handlers=[rich.logging.RichHandler(markup=True)],  # Very pretty, uses the `rich` package.
     )
 
     logger = logging.getLogger(__name__)
 
+    # To resume experiments with Wandb, we need to have code that can properly
+    # handle checkpointing (see other minimalist example about "checkpointing").
+    # We have to manage the `id` of the experiment that we are running so that
+    # it is unique and Wandb knows what previous run came before this one
+    # (i.e. what is being resumed). This is handled in the same way that saving
+    # model parameters is handled.
+    # This specific example here does not do that.
+
+    # Setup Wandb
+    wandb.init(
+        # Set the project where this run will be logged
+        project="awesome-wandb-example",
+        name=os.environ.get("SLURM_JOB_ID"),
+        resume="allow",  # See https://docs.wandb.ai/guides/runs/resuming
+        # Track hyperparameters and run metadata
+        config=vars(args),
+    )
+
     # Create a model and move it to the GPU.
     model = resnet18(num_classes=10)
     model.to(device=device)
 
     optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
 
     # Setup CIFAR10
     num_workers = get_num_workers()
     dataset_path = Path(os.environ.get("SLURM_TMPDIR", ".")) / "data"
     train_dataset, valid_dataset, test_dataset = make_datasets(str(dataset_path))
     train_dataloader = DataLoader(
         train_dataset,
         batch_size=batch_size,
         num_workers=num_workers,
         shuffle=True,
     )
     valid_dataloader = DataLoader(
         valid_dataset,
         batch_size=batch_size,
         num_workers=num_workers,
         shuffle=False,
     )
     test_dataloader = DataLoader(  # NOTE: Not used in this example.
         test_dataset,
         batch_size=batch_size,
         num_workers=num_workers,
         shuffle=False,
     )
 
-    # Checkout the "checkpointing and preemption" example for more info!
     logger.debug("Starting training from scratch.")
 
     for epoch in range(epochs):
         logger.debug(f"Starting epoch {epoch}/{epochs}")
 
         # Set the model in training mode (important for e.g. BatchNorm and Dropout layers)
         model.train()
 
         # NOTE: using a progress bar from tqdm because it's nicer than using `print`.
         progress_bar = tqdm(
             total=len(train_dataloader),
             desc=f"Train epoch {epoch}",
         )
 
         # Training loop
         for batch in train_dataloader:
             # Move the batch to the GPU before we pass it to the model
             batch = tuple(item.to(device) for item in batch)
             x, y = batch
 
             # Forward pass
             logits: Tensor = model(x)
 
             loss = F.cross_entropy(logits, y)
 
             optimizer.zero_grad()
             loss.backward()
             optimizer.step()
 
             # Calculate some metrics:
             n_correct_predictions = logits.detach().argmax(-1).eq(y).sum()
             n_samples = y.shape[0]
             accuracy = n_correct_predictions / n_samples
 
             logger.debug(f"Accuracy: {accuracy.item():.2%}")
             logger.debug(f"Average Loss: {loss.item()}")
 
+            # Log metrics with wandb
+            wandb.log({"train/accuracy": accuracy, "train/loss": loss})
+
             # Advance the progress bar one step and update the progress bar text.
             progress_bar.update(1)
             progress_bar.set_postfix(loss=loss.item(), accuracy=accuracy.item())
         progress_bar.close()
 
         val_loss, val_accuracy = validation_loop(model, valid_dataloader, device)
         logger.info(f"Epoch {epoch}: Val loss: {val_loss:.3f} accuracy: {val_accuracy:.2%}")
+        wandb.log({"val/accuracy": val_accuracy, "val/loss": val_loss})
 
     print("Done!")
 
 
 @torch.no_grad()
 def validation_loop(model: nn.Module, dataloader: DataLoader, device: torch.device):
     model.eval()
 
     total_loss = 0.0
     n_samples = 0
     correct_predictions = 0
 
     for batch in dataloader:
         batch = tuple(item.to(device) for item in batch)
         x, y = batch
 
         logits: Tensor = model(x)
         loss = F.cross_entropy(logits, y)
 
         batch_n_samples = x.shape[0]
         batch_correct_predictions = logits.argmax(-1).eq(y).sum()
 
         total_loss += loss.item()
         n_samples += batch_n_samples
         correct_predictions += batch_correct_predictions
 
     accuracy = correct_predictions / n_samples
     return total_loss, accuracy
 
 
 def make_datasets(
     dataset_path: str,
     val_split: float = 0.1,
     val_split_seed: int = 42,
 ):
     """Returns the training, validation, and test splits for CIFAR10.
 
     NOTE: We don't use image transforms here for simplicity.
     Having different transformations for train and validation would complicate things a bit.
     Later examples will show how to do the train/val/test split properly when using transforms.
     """
     train_dataset = CIFAR10(
         root=dataset_path, transform=transforms.ToTensor(), download=True, train=True
     )
     test_dataset = CIFAR10(
         root=dataset_path, transform=transforms.ToTensor(), download=True, train=False
     )
     # Split the training dataset into a training and validation set.
     n_samples = len(train_dataset)
     n_valid = int(val_split * n_samples)
     n_train = n_samples - n_valid
     train_dataset, valid_dataset = random_split(
         train_dataset, (n_train, n_valid), torch.Generator().manual_seed(val_split_seed)
     )
     return train_dataset, valid_dataset, test_dataset
 
 
 def get_num_workers() -> int:
     """Gets the optimal number of DatLoader workers to use in the current job."""
     if "SLURM_CPUS_PER_TASK" in os.environ:
         return int(os.environ["SLURM_CPUS_PER_TASK"])
     if hasattr(os, "sched_getaffinity"):
         return len(os.sched_getaffinity(0))
     return torch.multiprocessing.cpu_count()
 
 
 if __name__ == "__main__":
     main()

Running this example

Note : On DRAC clusters you will need to run wandb off to log your data as offline mode. You will then be able to upload your runs with the command wandb sync --sync-all

$ wandb login
$ sbatch job.sh